Panchromatic Observations of the Nuclei of 3CRR Radio Galaxies: Implications for Feeding, Feedback, and Black Hole Spin

Dan Evans (U.S. National Science Foundation & Harvard-Smithsonian Center for Astrophysics), Beatriz Mingo (Hertfordshire), Mark Birkinshaw (Bristol), Diana Worrall (Bristol), David Garofalo (JPL), Martin Hardcastle (Hertfordshire), Judith Croston (Southampton), Ralph Kraft (SAO)

Cen A at 1.4 GHz (CSIRO/ATNF/ASTRON/MPIfR)

I. X-ray Diagnostics

A Cartoon of X-ray Emission in AGN

A Cartoon of X-ray Emission in AGN

- Luminous accretion disk surrounded by "torus"
- Unification prediction: X-ray continuum emission consists of:
- "Radio-quiet" accretion-related component
- "Radio-loud" jet-related component

Black hole + Disk Diagnostics

- The 6.4 keV Fe Kα line complex in general consists of a narrow line core, often accompanied by broadened emission
- If we can deconvolve the contributions from the two, we can probe AGN and black hole physical conditions
- Narrow core always attributed to the circumnuclear torus
- Broadened emission may be a relativistically blurred diskline
- Possibility of constraining spin

2. Observations of 3CRR Sources at z<1.0

- I35 sources, of which 89 observed with Chandra or XMM-Newton
- Latest work (Mingo et al. 2013, submitted) considers a statistically complete subsample of 2Jy sources at 0.02 < z < 0.7
- Excellent IR (chiefly Spitzer), optical (GMOS+HST), and radio (VLA) coverage

Low- and High-Excitation Radio Galaxies

- $L/L_{Edd} \sim 10^{-7} 10^{-4}$
- Jet dominated X-ray emission, ADAFs
- No torus?
- Tend to inhabit gas-rich environments
- Significant feedback between AGN and environment

- Strong optical emission lines
- $L/L_{Edd} \sim 10^{-2}$
- Accretion-dominated X-ray emission
- Narrow Fe Kα lines
- Cold gas signatures
- Tend to inhabit gas-poor environments
- Hot-gas feedback unimportant

Low- and High-Excitation Radio Galaxies

Low- and High-Excitation Radio Galaxies

Mostly FRIs, though a significant population of FRIIs at 0.1<z<0.5

Typically FRIIs, though notable exceptions such as Cen A or NGC 3801

An Eddington Switch?

Mingo et al. (2013), MNRAS, submitted

3. Testing Bondi Accretion

Testing Bondi Accretion

Bondi Rates

- Only the least powerful LERGs can be powered by Bondi accretion
- The vast majority of HERGs are a long way away from being able to be powered by hot-mode accretion.

4. Testing Cold-Mode Accretion

Testing Cold-Mode Accretion

LERG

HERG

- No correlation between molecular gas mass and jet power (McNamara et al. 2011)
- No evidence of cold gas structures in X-ray spectra (no torus, no cold disk)
- Evidence for cold gas in the nuclear Xray spectra
- Need molecular gas estimates for HERGs (e.g., ALMA)

5. Black Hole Spin?

On the Lack of Disklines in RLAGN

Caveat: Any model must be able to explain the paucity of relativistic disklines in radio-loud AGN

Reflection and Radio-Loudness

Reflection and Radio-Loudness

Radio-Quiet

Radio-Loud (HERG)

Hybrid BZ+BP+ADAF Models Nemmen et al. (2006), Meier et al. (2009)

McNamara et al. (2011)

Wu et al. (2011)

Can explain LERGs

Mergers can produce retrograde spin (Berti & Volonteri 2008)

ISCO for an a=-1 black hole is $9R_g$

Is jet power greatest for maximally retrograde black holes?

(Garofalo 2009; Garofalo, Evans, and Sambruna 2010; but c.f. Tchekhovskoy & McKinney 2012)

Magnetically Arrested Accretion on to a Rapidly Spinning Black Hole

- Geometrically thick disks.
- Efficiency η increases with increasing disk thickness.
- Can easily suppress relativistically broadened Fe K α line.

Tchekhovskoy et al. (2010, 2011, 2012)

Summary

 X-ray spectra reveal two distinct types: LERGs and HERGs LERGs show unabsorbed X-ray emission from a jet and no torus.
HERGs show classic disk+torus characteristics.

Different host galaxies, different environments, different histories?

- 2. Bondi accretion cannot power many LERGs and all HERGs Only the weakest FRI outbursts from LERGs can be powered by Bondi accretion; essentially no HERGs can be.
- 3. Cold gas mass does not correlate with jet power Necessitates a consideration of...
- 4. Black hole spin?

Must reconcile models with the fact that RLAGN do not show disklines. Consistent with high scale-height disks coupled with rapidly spinning black holes.